6 resultados para femtosecond phenomena

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Bruno Aleixo" is a viral animation character, created by the Portuguese collective GANA, that surfaced online in 2008. Their animation works have meanwhile crossed onto the most diverse media, and have been branching out in multiple webs of narratives, constantly referring to each other, as well as constantly quoting disparate references such as film classics, chatrooms and TV ads for detergents. This paper attempts a triple analysis of this object of study: the ways in which technology has been fostering non-linear narratives while widening the available aesthetic spectrum, the ways in which processes of cultural consumerism are being reinvented in light of the web 2.0, and the use of "pseudo-nonsense" as a process of oblique cultural psychoanalysis. We will further attempt to demonstrate how new media and web networks have been contributing to a fragmentation of audiences, as well as a blurring between dominant cultures and sub-cultural phenomena; and we will end by positing that the structural principles behind the "Bruno Aleixo" series can be applied in social and cultural contexts situated at the opposite end of the spectrum of traditional expectations regarding Animation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of computer animation represents one of the most relevant andrevolutionary aspects in the rise of contemporary digital visual culture (Darlew,2000), in particular, phenomena such as cinema “spectacular “ (Ibidem) and videogames. This article analyzes the characteristics of this “culture of simulation” (Turkle, 1995:20) relating the multidisciplinary and spectrum of technical and stylistic choices to the dimension of virtual characters acting. The result of these hybrid mixtures and computerized human motion capture techniques - called virtual cinema, universal capture, motion capture, etc. - cosists mainly on the sophistication of “rotoscoping”, as a new interpretation and appropriation of the captured image. This human motion capture technology, used largely by cinema and digital games, is one of the reasons why the authenticity of the animation is sometimes questioned. It is in the fi eld of 3D computer animation visual that this change is more signifi cant, appearing regularly innovative techniques of image manipulation and “hyper-cinema” (Lamarre, 2006: 31) character’s control with deeper sense of emotions. This shift in the culture that Manovich (2006: 27) calls “photo-GRAPHICS” - and Mulvey (2007) argue that creates a new form of possessive relationship with the viewer, in that it can analyze in detail the image, it can acquire it and modify it - is one of the most important aspects in the rise of Cubbit’s (2007) “cinema of attraction”. This article delves intrinsically into the analyze of virtual character animation — particularly in the fi eld of 3D computer animation and human digital acting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O direito económico é uma relação entre economia e direito. Tanto direito, como economia são fenómenos da vida social e disciplinas das ciências sociais e humanas. § The economic law is a relationship between economics and law. As much right as economy are phenomena of social life and disciplines of the social sciences and humanities.