5 resultados para explicit categorization
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
Once delighted by the moving image advent as a new method of realistically presenting reality, the viewer has been reposition himself towards the audiovisual contents he consumes, as he is given the opportunity to create and share his own perspective of that reality. We are living in a new technological setting, governed mainly by factors of interactivity, digital systems and technological convergence. The research project that we will present in this paper focuses on the subject of participatory media and the way cultural institutions are increasingly facing the inevitability of a profound revision of their traditional parameters of unidirectional communication, given the increasing availability of tools for audiovisual production as well as the diversity of networked communication contexts. The Serralves Foundation with its Museum of Contemporary Art, in Porto, Portugal, was the subject of a fi rst study of an empirical nature: a series of audiovisual objects were developed, in order to generate material for analysis and proposition. In this new stage of the project, our aim is to identify new procedures and practices that may be effectively implemented within the institutional universe. We intend to propose effi cient audiovisual communication contexts, including the maximizing of the relationship between institutions and audiences regarding dimensions that are traditionally outside the institutional radar: identity, narrative and affection. The project is currently in the process of surveying and categorization, with the aim of producing a map of different vocations and positions of the various institutions in regards to the aforementioned issues, which require participatory communication.
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
This work presents an analysis of the cultural and artistic field, positively compromised with social and political questions. The authors start with the categorization of the idea of culture and move to vindication art movements. These movements, which followed the first vanguards and worked from the compromise with “otherness”, are at the origin of the contemporary denomination of political art. In this context, the authors approach the origins of activist art, referring to issues of gender, multiculturalism, globalization, and poverty. The different forms of presenting content are also an object of analysis: from art tradition to the contamination of daily life, from local to global, from street contact to digital.
Resumo:
While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.