3 resultados para calculations-aiPI
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.
Resumo:
Exploratory factor analysis is a widely used statistical technique in the social sciences. It attempts to identify underlying factors that explain the pattern of correlations within a set of observed variables. A statistical software package is needed to perform the calcula- tions. However, there are some limitations with popular statistical software packages, like SPSS. The R programming language is a free software package for statistical and graphical computing. It o ers many packages written by contributors from all over the world and programming resources that allow it to overcome the dialog limitations of SPSS. This paper o ers an SPSS dialog written in the R programming language with the help of some packages, so that researchers with little or no knowledge in programming, or those who are accustomed to making their calculations based on statistical dialogs, have more options when applying factor analysis to their data and hence can adopt a better approach when dealing with ordinal, Likert-type data.
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.