2 resultados para body segment parameter
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention