3 resultados para battery-powered

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of 272 nm and a degree of porosity of 87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laparoscopic surgery (LS) has revolutionized traditional surgical techniques introducing minimally invasive procedures for diagnosis and local therapies. LSs have undeniable advantages, such as small patient incisions, reduced postoperative pain and faster recovery. On the other hand, restricted vision of the anatomical target, difficult handling of the surgical instruments, restricted mobility inside the human body, need of dexterity to hand-eye coordination and inadequate and non-ergonomic surgical instruments may restrict LS only to more specialized surgeons. To overcome the referred limitations, this work presents a new robotic surgical handheld system – the EndoRobot. The EndoRobot was designed to be used in clinical practice or even as a surgical simulator. It integrates an electromechanical system with 3 degrees of freedom. Each degree can be manipulated independently and combined with different levels of sensitivity allowing fast and slow movements. As other features, the EndoRobot has battery power or external power supply, enables the use of bipolar radiofrequency to prevent bleeding while cutting and allows plug-and-play of the laparoscopic forceps for rapid exchange. As a surgical simulator, the system was also instrumented to measure and transmit, in real time, its position and orientation for a training software able to monitor and assist the trainee’s surgical movements.