5 resultados para audiovisual materials

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta comunicação apresentaremos as metodologias e conclusões previstas da primeira fase do trabalho de construção de narrativas audiovisuais participativas relacionadas com o projeto “Manobras no Porto”, que irá servir de caso de estudo para o projeto de investigação intitulado: “The Museum of All: Práticas de Comunicação Institucional num Mundo de Redes Participativas”. Recorrendo a técnicas de observação participante, nesta primeira fase, o objectivo é mapear o posicionamento dos parceiros do projeto em estudo e identificar as suas ações de dinamização cultural, recolher informações sobre as problemáticas sociais, económicas e culturais da zona de intervenção do projeto e auscultar os públicos intervenientes sobre as prioridades nos seus quotidianos e vivências. Posteriormente, passaremos a uma fase de proposição, com o objectivo de analisar contextos de cooperação, participação e envolvimento das comunidades na criação colectiva de novas mensagens e narrativas, através da implementação de um conjunto de exercícios audiovisuais participativos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once delighted by the moving image advent as a new method of realistically presenting reality, the viewer has been reposition himself towards the audiovisual contents he consumes, as he is given the opportunity to create and share his own perspective of that reality. We are living in a new technological setting, governed mainly by factors of interactivity, digital systems and technological convergence. The research project that we will present in this paper focuses on the subject of participatory media and the way cultural institutions are increasingly facing the inevitability of a profound revision of their traditional parameters of unidirectional communication, given the increasing availability of tools for audiovisual production as well as the diversity of networked communication contexts. The Serralves Foundation with its Museum of Contemporary Art, in Porto, Portugal, was the subject of a fi rst study of an empirical nature: a series of audiovisual objects were developed, in order to generate material for analysis and proposition. In this new stage of the project, our aim is to identify new procedures and practices that may be effectively implemented within the institutional universe. We intend to propose effi cient audiovisual communication contexts, including the maximizing of the relationship between institutions and audiences regarding dimensions that are traditionally outside the institutional radar: identity, narrative and affection. The project is currently in the process of surveying and categorization, with the aim of producing a map of different vocations and positions of the various institutions in regards to the aforementioned issues, which require participatory communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.