7 resultados para artificial surface cracks

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of artificial prosthetic replacements depends on the fixation of the artificial prosthetic component after being implanted in the thighbone. The materials for fixation are subject to mechanical stresses, which originate permanent deformations, incipient cracks and even fatigue fractures. This work shows the possibility of monitoring the mechanical stress over time in prosthesis. In this way, highly sensitive silicon thin-film piezoresistive sensors were developed attached to prosthesis and their results compared with commercial strain gauge sensors. Mechanical stress-strain experiments were performed in compressive mode, during 10,000 cycles. Experimental data was acquired at mechanical vibration frequencies of 0.5 Hz, 1 Hz and 5 Hz, and sent to a computer by means of a wireless link. The results show that there is a decrease in sensitivity of the thin-film silicon piezoresistive sensors when they are attached to the prosthesis, but this decrease does not compromise its monitoring performance. The sensitivity, compared to that of commercial strain gauges, is much larger due to their higher gauge factors (-23.5), when compared to the GFs of commercial sensors (2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.