8 resultados para amputation, prosthesis, rehabilitation

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.