7 resultados para WIRELESS NETWORKS
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Wireless medical systems are comprised of four stages, namely the medical device, the data transport, the data collection and the data evaluation stages. Whereas the performance of the first stage is highly regulated, the others are not. This paper concentrates on the data transport stage and argues that it is necessary to establish standardized tests to be used by medical device manufacturers to provide comparable results concerning the communication performance of the wireless networks used to transport medical data. Besides, it suggests test parameters and procedures to be used to produce comparable communication performance results.
Resumo:
This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.
Resumo:
According to the opinion of clinicians, emerging medical conditions can be timely detected by observing changes in the activities of daily living and/or in the physiological signals of a person. To accomplish such purpose, it is necessary to properly monitor both the person’s physiological signals as well as the home environment with sensing technology. Wireless sensor networks (WSNs) are a promising technology for this support. After receiving the data from the sensor nodes, a computer processes the data and extracts information to detect any abnormality. The computer runs algorithms that should have been previously developed and tested in real homes or in living-labs. However, these installations (and volunteers) may not be easily available. In order to get around that difficulty, this paper suggests the making of a physical model to emulate basic actions of a user at home, thus giving autonomy to researchers wanting to test the performance of their algorithms. This paper also studies some data communication issues in mobile WSNs namely how the orientation of the sensor nodes in the body affects the received signal strength, as well as retransmission aspects of a TDMA-based MAC protocol in the data recovery process.
Resumo:
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Resumo:
This paper proposes a wireless EEG acquisition platform based on Open Multimedia Architecture Platform (OMAP) embedded system. A high-impedance active dry electrode was tested for improving the scalp- electrode interface. It was used the sigma-delta ADS1298 analog-to-digital converter, and developed a “kernelspace” character driver to manage the communications between the converter unit and the OMAP’s ARM core. The acquired EEG signal data is processed by a “userspace” application, which accesses the driver’s memory, saves the data to a SD-card and transmits them through a wireless TCP/IP-socket to a PC. The electrodes were tested through the alpha wave replacement phenomenon. The experimental results presented the expected alpha rhythm (8-13 Hz) reactiveness to the eyes opening task. The driver spends about 725 μs to acquire and store the data samples. The application takes about 244 μs to get the data from the driver and 1.4 ms to save it in the SD-card. A WiFi throughput of 12.8Mbps was measured which results in a transmission time of 5 ms for 512 kb of data. The embedded system consumes about 200 mAh when wireless off and 400 mAh when it is on. The system exhibits a reliable performance to record EEG signals and transmit them wirelessly. Besides the microcontroller-based architectures, the proposed platform demonstrates that powerful ARM processors running embedded operating systems can be programmed with real-time constrains at the kernel level in order to control hardware, while maintaining their parallel processing abilities in high level software applications.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.