4 resultados para User-centered system design -- TFC
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
In medical emergency situations, when a patient needs a blood transfusion, the universal blood type O− is administered. This procedure may lead to the depletion of stock reserves of O− blood. Nowadays, there is no commercial equipment capable of determining the patient's blood type in situ, in a fast and reliable process. Human blood typing is usually performed through the manual test, which involves a macroscopic observation and interpretation of the results by an analyst. This test, despite of having a fast response time, may lead to human errors, which sometimes can be fatal to the patient. This paper presents the development of an automatic mechatronic prototype for determining human blood typing (ABO and Rh systems) through image processing techniques. The prototype design takes into account the characteristics of reliability of analysis, portability, and response time allowing the system to be used in emergency situations. The developed prototype performs blood and reagents mixture acquires the resultant image and processes the data (based on image processing techniques) to determine the sample blood type. It was tested in a laboratory, using cataloged samples of blood types, provided by the Portuguese Institute of Blood and Transplantation. Hereafter, it is expected to test and validate the prototype in clinical environments.
Resumo:
With the increasing number of aged people, especially in developed countries, Ambient Assisted Living solutions have become an important subject to be explored and developed. Currently, as specialized Institutions in geriatric care cannot cope with the increasing requests for support of quality of life, patients have to remain at their homes having as caregiver the other member of the couple or a member of close family. A solution for supporting the caregiver, during assisting the bedridden person with some basic tasks as eating, taking a bath and/or hygiene care is of utmost importance. This paper presents an approach for supporting the caregiver in moving and repositioning the bedridden elderly people (BEP) with the assistance of a mechanical system conveyer. The conceptual design of the mechanical system must be devoted to assist the caregiver in the handling and repositioning of the BEP. The proposed mechatronic system must, ideally, minimize the system's handling complexity, reduce the number of caregivers and the amount of spended and needed effort.
Resumo:
Ambient Assisted Living is an important subject to be explored and developed, especially in developed countries, due to the increasing number of aged people. In this context the development of mechatronic support systems for bedridden elderly people (BEP) living in their homes is essential in order to support independence, autonomy and improve their quality of life. Some basic tasks as eating, taking a bath and/or hygiene cares become difficult to execute, regarding that often the main caregiver is the other element of the aged couple (husband or wife). This paper presents the conceptual design of a mechanical system especially devoted to assist the caregiver in the handling and repositioning of the BEP. Issues as reducing the number of caregivers, to only one, and reducing the system's handling complexity (because most of the time it will be used by an aged person) are considered. The expertise obtained from the visits to rehabilitation centers and hospitals, and from working meetings, are considered in the development of the proposed mechatronic system.
Resumo:
Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant’s position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.