4 resultados para UNIAXIAL COMPRESSION

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.