2 resultados para Trajectory control
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This paper presents a study carried out in order to evaluate the students' perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author's believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.
Resumo:
Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.