6 resultados para Train scheduling
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.
Resumo:
The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.
Resumo:
Cognitive impaired population face with innumerable problems in their daily life. Surprisingly, they are not provided with any help to perform those tasks for which they have difficulties. As a consequence, it is necessary to develop systems that allow those people to live independently and autonomously. Living in a technological era, people could take advantage of the available technology, being provided with some solutions to their needs. This paper presents a platform that assists users with remembering where their possessions are. Mainly, an object recognition process together with an intelligent scheduling applications are integrated in an Ambient Assisted Living (AAL) environment.
Resumo:
The progressive aging of the population requires new kinds of social and medical intervention and the availability of different services provided to the elder population. New applications have been developed and some services are now provided at home, allowing the older people to stay home instead of having to stay in hospitals. But an adequate response to the needs of the users will imply a high percentage of use of personal data and information, including the building up and maintenance of user profiles, feeding the systems with the data and information needed for a proactive intervention in scheduling of events in which the user may be involved. Fundamental Rights may be at stake, so a legal analysis must also be considered.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
With the number of elderly people increasing tremendously worldwide, comes the need for effective methods to maintain or improve older adults' cognitive performance. Using continuous neurofeedback, through the use of EEG techniques, people can learn how to train and alter their brain electrical activity. A software platform that puts together the proposed rehabilitation methodology has been developed: a digital game protocol that supports neurofeedback training of alpha and theta rhythms, by reading the EEG activity and presenting it back to the subject, interleaved with neurocognitive tasks such as n-Back and Corsi Block-Tapping. This tool will be used as a potential rehabilitative platform for age-related memory impairments.