2 resultados para Time delay systems
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Developed societies are currently facing severe demographic changes: the world is getting older at an unprecedented rate. In 2000, about 420 million people, or approximately 7 percent of the world population, were aged 65 or older. By 2050, that number will be nearly 1.5 billion people, about 16 percent of the world population. This demographic trend will be also followed by an increase of people with physical limitations. New challenges will be raised to the traditional health care systems, not only in Portugal, but also in all other European states. There is an urgent need to find solutions that allow extending the time people can live in their preferred environment by increasing their autonomy, self-confidence and mobility. AAL4ALL presents an idea for an answer through the development of an ecosystem of products and services for Ambient Assisted Living (AAL) associated to a business model and validated through large scale trial. This paper presents the results of the first survey developed within the AAL4ALL project: the users’ survey targeted at the Portuguese seniors and pre-seniors. This paper is, thus, about the lives of the Portuguese population aged 50 and over.
Resumo:
This paper proposes a wireless EEG acquisition platform based on Open Multimedia Architecture Platform (OMAP) embedded system. A high-impedance active dry electrode was tested for improving the scalp- electrode interface. It was used the sigma-delta ADS1298 analog-to-digital converter, and developed a “kernelspace” character driver to manage the communications between the converter unit and the OMAP’s ARM core. The acquired EEG signal data is processed by a “userspace” application, which accesses the driver’s memory, saves the data to a SD-card and transmits them through a wireless TCP/IP-socket to a PC. The electrodes were tested through the alpha wave replacement phenomenon. The experimental results presented the expected alpha rhythm (8-13 Hz) reactiveness to the eyes opening task. The driver spends about 725 μs to acquire and store the data samples. The application takes about 244 μs to get the data from the driver and 1.4 ms to save it in the SD-card. A WiFi throughput of 12.8Mbps was measured which results in a transmission time of 5 ms for 512 kb of data. The embedded system consumes about 200 mAh when wireless off and 400 mAh when it is on. The system exhibits a reliable performance to record EEG signals and transmit them wirelessly. Besides the microcontroller-based architectures, the proposed platform demonstrates that powerful ARM processors running embedded operating systems can be programmed with real-time constrains at the kernel level in order to control hardware, while maintaining their parallel processing abilities in high level software applications.