10 resultados para Structure Project
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.
Resumo:
This paper proposes the joint use of the AHP (Analytic Hierarchy Process) and the ICB (IPMA Competence Baseline), as a tool for the decision-making process of selecting the most suitable managers for projects. A hierarchical structure, comprising the IPMA’s ICB 3.0 contextual, behavioural and technical competence elements, is constructed for the selection of project managers. It also describes the AHP implementation, illustrating the whole process with an example using all the 46 ICB competence elements as model criteria. This tool can be of high interest to decision-makers because it allows comparing the candidates for managing a project using a systematic and rigorous process with a rich set of proven criteria.
Resumo:
The success of the digital game industry is spawning several undergraduate degrees aiming at the training of digital game developers. Building adequate new courses curricula is not a trivial task and demands a profound analysis of the scientific areas to introduce as well as the dependencies throughout the entire degree. Another important aspect of every academic educational plan are the satellite projects that promote entrepreneurship and provide practical professional experiences to students. This paper presents the main guidelines adopted in the creation of the first digital game development undergraduate degree created in Portugal.
Resumo:
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.
Resumo:
Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.
Resumo:
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under mechanical solicitations. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has been scarcely addressed. Fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds
Resumo:
The success of the digital game industry is spawning several undergraduate degrees aiming at the training of digital game developers. Building adequate new courses curricula is not a trivial task and demands a profound analysis of the scientific areas to introduce as well as the dependencies throughout the entire degree. Another important aspect of every academic educational plan are the satellite projects that promote entrepreneurship and provide practical professional experiences to students. This paper presents the main guidelines adopted in the creation of the first digital game development undergraduate degree created in Portugal.
Resumo:
A unique neural electrode design is proposed with 3 mm long shafts made from an aluminum-based substrate. The electrode is composed by 100 individualized shafts in a 10 × 10 matrix, in which each aluminum shafts are precisely machined via dicing-saw cutting programs. The result is a bulk structure of aluminum with 65 ° angle sharp tips. Each electrode tip is covered by an iridium oxide thin film layer (ionic transducer) via pulsed sputtering, that provides a stable and a reversible behavior for recording/stimulation purposes, a 40 mC/cm2 charge capacity and a 145 Ω impedance in a wide frequency range of interest (10 Hz-100 kHz). Because of the non-biocompatibility issue that characterizes aluminum, an anodization process is performed that forms an aluminum oxide layer around the aluminum substrate. The result is a passivation layer fully biocompatible that furthermore, enhances the mechanical properties by increasing the robustness of the electrode. For a successful electrode insertion, a 1.1 N load is required. The resultant electrode is a feasible alternative to silicon-based electrode solutions, avoiding the complexity of its fabrication methods and limitations, and increasing the electrode performance.
Resumo:
Development of suitable membranes is a fundamental requisite for tissue and biomedical engineering applications. This work presents fish gelatin random and aligned electrospun membranes cross-linked with glutaraldehyde (GA). It was observed that the fiber average diameter and the morphology is not influenced by the GA exposure time and presents fibers with an average diameter around 250 nm. Moreover, when the gelatin mats are immersed in a phosphate buffered saline solution (PBS), they can retain as much as 12 times its initial weight of solution almost instantaneously, but the material microstructure of the fiber mats changes from the characteristic fibrous to an almost spherical porous structure. Cross-linked gelatin electrospun fiber mats and films showed a water vapor permeability of 1.37 ± 0.02 and 0.13 ± 0.10 (g.mm)/(m2.h.kPa), respectively. Finally, the processing technique and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Preliminary cell culture results showed good cell adhesion and proliferation in the cross-linked random and aligned gelatin fiber mats.
Resumo:
Carpooling initiated in America in the 1970s due to the oil crisis. However, over the past years, carpooling has increased significantly across the world. Some countries have created a High Occupancy Vehicle (HOV) lane to encourage commuters not to travel alone. In additional, carpool websites has been developed to facilitate the connection between the commuters, making it possible to create a compatible match in a faster and efficient manner. This project focuses on carpooling, especially in an academic environment since younger people are more likely to choose carpool. Initially, an intense research was made to examine carpool studies that occurred all over the world, following with a research of higher education institutes that use carpooling as a transportation mode. Most websites created carpools by targeting people from a specific country. These commuters have different origins and destinations making it more complicated to create compatible matches. The objective of this project is to develop a system helping teachers and students from an academic environment to create carpool matches. This objective makes it easier to create carpools because these students and teachers have the same destination. During the research, it was essential to explore, as many as possible, existing carpool websites that are available across the world. After this analysis, several sketches were made to develop the layout and structure of the web application that’s being implemented throughout the project. Once the layout was established, the development of the web application was initiated. This project had its ups and downs but it accomplished all the necessary requirements. This project can be accessed on the link: http://ipcacarpool.somee.com. Once the website was up and running, a web-based survey was developed to study the reasons that motivate people to consider carpooling as an alternative to driving alone. To develop this survey was used a tool called Survey Planet. This survey contained 408 respondents, which 391 are students and 17 are teachers. This study concludes that a majority of the respondents don’t carpool, however they will consider carpooling if there was a dedicated parking space. A majority of the respondents that carpool initiated less than a year ago, indicating that this mean of transportation is recent.