8 resultados para Sparse matrices
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
The relation between patient and physician in most modern Health Care Sys- tems is sparse, limited in time and very in exible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to im- prove the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
Cryptographic software development is a challenging eld: high performance must be achieved, while ensuring correctness and com- pliance with low-level security policies. CAO is a domain speci c language designed to assist development of cryptographic software. An important feature of this language is the design of a novel type system introducing native types such as prede ned sized vectors, matrices and bit strings, residue classes modulo an integer, nite elds and nite eld extensions, allowing for extensive static validation of source code. We present the formalisation, validation and implementation of this type system
Resumo:
The relation between patient and physician in most modern Health Care Systems is sparse, limited in time and very inflexible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to improve the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
Money laundering operations faced multiple changes and become more complex, in line with financial innovation. Often, regulation does not follow that innovation, giving opportunity to take advantage of thes e gaps in less lawful activities. The bitcoin is a virtual currency that has grown significantly, both in value and in volume of transactions, in recent years. The dimension of the phenomenon led to an increasing surveillance from the financial supervisors . We search for evidence of the relationship between money laundering and transactions carried out in bitcoins, the most popular virtual currency at the moment. We analyse the official publications relating the two themes, academic research and the notori ety within the international media. The attitudes toward the bitcoin are diverse, but all share concerns about its future impact. Some sparse evidence indicates that bitcoin may be an opportunity for money laundering, however more data is required.
Resumo:
Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.