4 resultados para Soil vapor extraction
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.
Resumo:
The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention