4 resultados para Risk-taking Behavior
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Tourism is a phenomenon that moves millions of people around the world, taking as a major driver of the global economy. Such relevance is reflected in the proliferation of studies in the overall area known as tourism, under various perspectives and backgrounds. In the light of such multitude of insights our study aims at gaining a deeper understanding of customer profiling and behavior in cross-border tourism destinations. Previous studies conducted in such contexts suggest that cross-border regions (CBRs) are an attractive and desirable idea, yet requiring further theoretical and empirical research. The new configuration of many CBRs calls for a debate on issues concerning its development, raising up important dimensions, such as, organization and planning of common tourism destinations. There is still a gap in the understanding of destination management in CBRs and the customer profile and motivations. Overall this research aims at attaining a deeper understanding of the profile and behavior of consumers in tourism settings, addressing the predisposition for the destination. The study addresses the following research question: “What factors influence customer behavior and attitudes in a CBRs tourism destination?” To address our question we will take an interdisciplinary perspective bringing together inputs from marketing, tourism and local economics. When addressing consumer behavior in tourism previous studies considered the following constructs: involvement, place attachment, satisfaction and destination loyalty. In order to establish the causal relationships in our theoretical model, we intend to develop a predominant quantitative design, yet we plan to conduct exploratory interviews. In the analysis and discussion of results, we intend to use Structural Equation Modeling. It will further allow understanding how the constructs in the research model relate to each other in the specified context. Results are also expected to have managerial implications. Consequently our results may assist decision makers in developing their local policies.