5 resultados para Residue number system

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is developed in the context of Ambient Assisted Living (AAL) and has, as main purpose, the development of a mechatronic system that allows caring of bedridden patients with ongoing medical care terminal (MCT), by a single person. This system allows higher autonomy in domiciliary care, safety, comfort and hygiene of bedridden patients. It contributes to a large increase in their quality of life as well as the ease of monitoring by providers of continuous care, which, in many cases, may be the family itself. The product includes an embedded processing interface for acquiring physiological data to support online monitoring. The development of this project was focused on improving the quality of life, autonomy, participation in social life and reducing healthcare costs in the area AAL. The developed societies currently face severe demographic changes: the world is aging at an unprecedented rate. In 2000, about 420 million people, or about 7 percent of the world population were over 65 years old. In 2050, that number will be near 1500 million people, about 16 percent of the world population. This demographic trend will be accompanied by the increase of people with physical limitations. This will impose new challenges for traditional health systems, not only for Portugal but also for all European countries. There is an urgent need to find solutions to improve the lives of people in their preferred environment by increasing their autonomy, self-confidence and mobility. Therefore, in the case of household scenarios, the provision of effective health services is of fundamental importance to the welfare and economic development of each country. This ongoing project aims to develop a mechatronic system to meet the diverse needs, namely: improving life, health care, safety, comfort, and remote monitoring of bedridden person.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing number of aged people, especially in developed countries, Ambient Assisted Living solutions have become an important subject to be explored and developed. Currently, as specialized Institutions in geriatric care cannot cope with the increasing requests for support of quality of life, patients have to remain at their homes having as caregiver the other member of the couple or a member of close family. A solution for supporting the caregiver, during assisting the bedridden person with some basic tasks as eating, taking a bath and/or hygiene care is of utmost importance. This paper presents an approach for supporting the caregiver in moving and repositioning the bedridden elderly people (BEP) with the assistance of a mechanical system conveyer. The conceptual design of the mechanical system must be devoted to assist the caregiver in the handling and repositioning of the BEP. The proposed mechatronic system must, ideally, minimize the system's handling complexity, reduce the number of caregivers and the amount of spended and needed effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient Assisted Living is an important subject to be explored and developed, especially in developed countries, due to the increasing number of aged people. In this context the development of mechatronic support systems for bedridden elderly people (BEP) living in their homes is essential in order to support independence, autonomy and improve their quality of life. Some basic tasks as eating, taking a bath and/or hygiene cares become difficult to execute, regarding that often the main caregiver is the other element of the aged couple (husband or wife). This paper presents the conceptual design of a mechanical system especially devoted to assist the caregiver in the handling and repositioning of the BEP. Issues as reducing the number of caregivers, to only one, and reducing the system's handling complexity (because most of the time it will be used by an aged person) are considered. The expertise obtained from the visits to rehabilitation centers and hospitals, and from working meetings, are considered in the development of the proposed mechatronic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.