3 resultados para Requirements engineering process
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
More and more current software systems rely on non trivial coordination logic for combining autonomous services typically running on different platforms and often owned by different organizations. Often, however, coordination data is deeply entangled in the code and, therefore, difficult to isolate and analyse separately. COORDINSPECTOR is a software tool which combines slicing and program analysis techniques to isolate all coordination elements from the source code of an existing application. Such a reverse engineering process provides a clear view of the actually invoked services as well as of the orchestration patterns which bind them together. The tool analyses Common Intermediate Language (CIL) code, the native language of Microsoft .Net Framework. Therefore, the scope of application of COORDINSPECTOR is quite large: potentially any piece of code developed in any of the programming languages which compiles to the .Net Framework. The tool generates graphical representations of the coordination layer together and identifies the underlying business process orchestrations, rendering them as Orc specifications
Resumo:
COORDINSPECTOR is a Software Tool aiming at extracting the coordination layer of a software system. Such a reverse engineering process provides a clear view of the actually invoked services as well as the logic behind such invocations. The analysis process is based on program slicing techniques and the generation of, System Dependence Graphs and Coordination Dependence Graphs. The tool analyzes Common Intermediate Language (CIL), the native language of the Microsoft .Net Framework, thus making suitable for processing systems developed in any .Net Framework compilable language. COORDINSPECTOR generates graphical representations of the coordination layer together with business process orchestrations specified in WSBPEL 2.0
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.