7 resultados para Pulmonary Emphysema Multislice CT Data
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.