5 resultados para Program specification
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually oriented towards the imperative or object paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general, alternative to slicing functional programs
Resumo:
This paper reports on the development of specific slicing techniques for functional programs and their use for the identification of possible coherent components from monolithic code. An associated tool is also introduced. This piece of research is part of a broader project on program understanding and re-engineering of legacy code supported by formal methods
Resumo:
Current software development often relies on non-trivial coordination logic for combining autonomous services, eventually running on different platforms. As a rule, however, such a coordination layer is strongly woven within the application at source code level. Therefore, its precise identification becomes a major methodological (and technical) problem and a challenge to any program understanding or refactoring process. The approach introduced in this paper resorts to slicing techniques to extract coordination data from source code. Such data are captured in a specific dependency graph structure from which a coordination model can be recovered either in the form of an Orc specification or as a collection of code fragments corresponding to the identification of typical coordination patterns in the system. Tool support is also discussed
Resumo:
Abstract: in Portugal, and in much of the legal systems of Europe, «legal persons» are likely to be criminally responsibilities also for cybercrimes. Like for example the following crimes: «false information»; «damage on other programs or computer data»; «computer-software sabotage»; «illegitimate access»; «unlawful interception» and «illegitimate reproduction of protected program». However, in Portugal, have many exceptions. Exceptions to the «question of criminal liability» of «legal persons». Some «legal persons» can not be blamed for cybercrime. The legislature did not leave! These «legal persons» are v.g. the following («public entities»): legal persons under public law, which include the public business entities; entities utilities, regardless of ownership; or other legal persons exercising public powers. In other words, and again as an example, a Portuguese public university or a private concessionaire of a public service in Portugal, can not commit (in Portugal) any one of cybercrime pointed. Fair? Unfair. All laws should provide that all legal persons can commit cybercrimes. PS: resumo do artigo em inglês.
Resumo:
The lack of a commonly accepted de nition of a software component, the proliferation of competing `standards' and component frameworks, is here to stay, raising the fundamental question in component-based development of how to cope in practice with heterogeneity. This paper reports on the design of a Component Repository aimed to give at least a partial answer to the above question. The repository was fully speci ed in Vdm and a working prototype is currently being used in an industrial environment