7 resultados para Point Common Coupling
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
A common problem among information systems is the storage and maintenance of permanent information identified by a key. Such systems are typically known as data base engines or simply as data bases. Today the systems information market is full of solutions that provide mass storage capacities implemented in different operating system and with great amounts of extra functionalities. In this paper we will focus on the formal high level specification of data base systems in the Haskell language. We begin by introducing a high level view of a data base system with a specification of the most common operations in a functional point of view. We then augment this specification by lifting to the state monad which is then modified once again to permit input/output operations between the computations
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Purpose of the research: (a) To identify the degree of much loneliness reported in the Portuguese population over 50 years of age and (b) test whether loneliness can be predicted by socio-demographic, health related or social characteristic of the sample other than age. Materials and methods: 1174 late middle age and older adults were interviewed face to face by different interviewers across the country; after the informed consent was signed, we asked the participants several socio-demographic and health-related questions; finally we asked ‘‘How often do you feel lonely?’’ and participants responded according to a five point Likert scale. Principal results: The results showed that 12% of participants reporting feeling lonely often or always, whereas 40% reporting never feeling lonely. The remaining 48% self-reported they felt lonely seldom or sometimes. Additionally, results show that, when taken together, variables such as marital status, type of housing, residence settings, health conditions, social satisfaction, social isolation, lack of interest, transportation, and age were predictors of loneliness. Major conclusions: (1) The association of loneliness with advanced age has been greatly exaggerated by mass media and common sense; (2) But although our findings did not confirm the most alarmist views, the 12% of older adults reporting that they are feeling lonely always or often should be cause for attention and concern. It is necessary to understand the meaning, reasons and level of suffering implied on those feelings of loneliness. (3) Our findings suggest that it makes no sense to construe age as a singular feature or cause for feelings of loneliness. Instead, age and also a number of other features combine to predict feelings of loneliness. But even with our predictor variables there was a substantial of variance left unexplained. Therefore it is necessary to continue exploring how feelings of loneliness arise from the experience of living and how they can be changed.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.