21 resultados para Pinhão Manso
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Body and brain undergo several changes with aging. One of these changes is the loss of neuroplasticity, which leads to the decrease of cognitive abilities. Hence the necessity of stopping or reversing these changes is of utmost importance to contemporary society. In the present work, electroencephalogram (EEG) markers of cognitive decline are sought whilst the subjects perform the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young and elder participants. The results suggest that coherence on theta and alpha EEG rhythms decrease with aging and increase with performance. Additionally, theta phase coherence seems more sensitive to performance, while alpha synchronization appears as a potential ageing marker.
Resumo:
This paper proposes a wireless EEG acquisition platform based on Open Multimedia Architecture Platform (OMAP) embedded system. A high-impedance active dry electrode was tested for improving the scalp- electrode interface. It was used the sigma-delta ADS1298 analog-to-digital converter, and developed a “kernelspace” character driver to manage the communications between the converter unit and the OMAP’s ARM core. The acquired EEG signal data is processed by a “userspace” application, which accesses the driver’s memory, saves the data to a SD-card and transmits them through a wireless TCP/IP-socket to a PC. The electrodes were tested through the alpha wave replacement phenomenon. The experimental results presented the expected alpha rhythm (8-13 Hz) reactiveness to the eyes opening task. The driver spends about 725 μs to acquire and store the data samples. The application takes about 244 μs to get the data from the driver and 1.4 ms to save it in the SD-card. A WiFi throughput of 12.8Mbps was measured which results in a transmission time of 5 ms for 512 kb of data. The embedded system consumes about 200 mAh when wireless off and 400 mAh when it is on. The system exhibits a reliable performance to record EEG signals and transmit them wirelessly. Besides the microcontroller-based architectures, the proposed platform demonstrates that powerful ARM processors running embedded operating systems can be programmed with real-time constrains at the kernel level in order to control hardware, while maintaining their parallel processing abilities in high level software applications.
Resumo:
With the number of elderly people increasing tremendously worldwide, comes the need for effective methods to maintain or improve older adults' cognitive performance. Using continuous neurofeedback, through the use of EEG techniques, people can learn how to train and alter their brain electrical activity. A software platform that puts together the proposed rehabilitation methodology has been developed: a digital game protocol that supports neurofeedback training of alpha and theta rhythms, by reading the EEG activity and presenting it back to the subject, interleaved with neurocognitive tasks such as n-Back and Corsi Block-Tapping. This tool will be used as a potential rehabilitative platform for age-related memory impairments.
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus carinatum (PC) is a chest deformity caused by a disproportionate growth of the costal cartilages compared to the bony thoracic skeleton, pulling the sternum towards, which leads to its protrusion. There has been a growing interest on using the ‘reversed Nuss’ technique as minimally invasive procedure for PC surgical correction. A corrective bar is introduced between the skin and the thoracic cage and positioned on top of the sternum highest protrusion area for continuous pressure. Then, it is fixed to the ribs and kept implanted for about 2–3 years. The purpose of this work was to (a) assess the stresses distribution on the thoracic cage that arise from the procedure, and (b) investigate the impact of different positioning of the corrective bar along the sternum. The higher stresses were generated on the 4th, 5th and 6th ribs backend, supporting the hypothesis of pectus deformities correction-induced scoliosis. The different bar positioning originated different stresses on the ribs’ backend. The bar position that led to lower stresses generated on the ribs backend was the one that also led to the smallest sternum displacement. However, this may be preferred, as the risk of induced scoliosis is lowered.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.