4 resultados para Patterns recognition
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
COORDINSPECTOR is a Software Tool aiming at extracting the coordination layer of a software system. Such a reverse engineering process provides a clear view of the actually invoked services as well as the logic behind such invocations. The analysis process is based on program slicing techniques and the generation of, System Dependence Graphs and Coordination Dependence Graphs. The tool analyzes Common Intermediate Language (CIL), the native language of the Microsoft .Net Framework, thus making suitable for processing systems developed in any .Net Framework compilable language. COORDINSPECTOR generates graphical representations of the coordination layer together with business process orchestrations specified in WSBPEL 2.0
Resumo:
A large and growing amount of software systems rely on non-trivial coordination logic for making use of third party services or components. Therefore, it is of outmost importance to understand and capture rigorously this continuously growing layer of coordination as this will make easier not only the veri cation of such systems with respect to their original speci cations, but also maintenance, further development, testing, deployment and integration. This paper introduces a method based on several program analysis techniques (namely, dependence graphs, program slicing, and graph pattern analysis) to extract coordination logic from legacy systems source code. This process is driven by a series of pre-de ned coordination patterns and captured by a special purpose graph structure from which coordination speci cations can be generated in a number of di erent formalisms
Resumo:
The integration and composition of software systems requires a good architectural design phase to speed up communications between (remote) components. However, during implementation phase, the code to coordinate such components often ends up mixed in the main business code. This leads to maintenance problems, raising the need for, on the one hand, separating the coordination code from the business code, and on the other hand, providing mechanisms for analysis and comprehension of the architectural decisions once made. In this context our aim is at developing a domain-specific language, CoordL, to describe typical coordination patterns. From our point of view, coordination patterns are abstractions, in a graph form, over the composition of coordination statements from the system code. These patterns would allow us to identify, by means of pattern-based graph search strategies, the code responsible for the coordination of the several components in a system. The recovering and separation of the architectural decisions for a better comprehension of the software is the main purpose of this pattern language
Resumo:
Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.