1 resultado para PATTERN FORMATION (EXPERIMENT)
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (183)
- Biodiversity Heritage Library, United States (17)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Brock University, Canada (3)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (27)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (50)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (9)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (21)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Martin Luther Universitat Halle Wittenberg, Germany (12)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- National Center for Biotechnology Information - NCBI (23)
- Nottingham eTheses (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (23)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (17)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (36)
- Scielo Saúde Pública - SP (90)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (20)
- Universidade dos Açores - Portugal (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (98)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Michigan (2)
- University of Queensland eSpace - Australia (142)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.