2 resultados para OVERHAUSER EFFECT EXPERIMENTS
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc-filled polypropylene specimens was analyzed. The specimens were lateral-gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high-speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high-speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection-molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings.
Resumo:
Thermal degradation of as electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde (GA) have been studied by thermogravimetry (TG) coupled with an infrared spectrometer (FTIR). The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 ºC, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 – 270 ºC and chitosan thermal degradation that starts around 250 ºC and goes up to 400 ºC. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.