4 resultados para Non-understanding
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This work demonstrates that the theoretical framework of complex networks typically used to study systems such as social networks or the World Wide Web can be also applied to material science, allowing deeper understanding of fundamental physical relationships. In particular, through the application of the network theory to carbon nanotubes or vapour-grown carbon nanofiber composites, by mapping fillers to vertices and edges to the gap between fillers, the percolation threshold has been predicted and a formula that relates the composite conductance to the network disorder has been obtained. The theoretical arguments are validated by experimental results from the literature.
Resumo:
Current software development often relies on non-trivial coordination logic for combining autonomous services, eventually running on different platforms. As a rule, however, such a coordination layer is strongly woven within the application at source code level. Therefore, its precise identification becomes a major methodological (and technical) problem and a challenge to any program understanding or refactoring process. The approach introduced in this paper resorts to slicing techniques to extract coordination data from source code. Such data are captured in a specific dependency graph structure from which a coordination model can be recovered either in the form of an Orc specification or as a collection of code fragments corresponding to the identification of typical coordination patterns in the system. Tool support is also discussed
Resumo:
Current software development relies increasingly on non-trivial coordination logic for com- bining autonomous services often running on di erent platforms. As a rule, however, in typical non-trivial software systems, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identi cation becomes a major methodological (and technical) problem which cannot be overestimated along any program understanding or refactoring process. Open access to source code, as granted in OSS certi cation, provides an opportunity for the devel- opment of methods and technologies to extract, from source code, the relevant coordination information. This paper is a step in this direction, combining a number of program analysis techniques to automatically recover coordination information from legacy code. Such information is then expressed as a model in Orc, a general purpose orchestration language
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.