4 resultados para New methodology

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour and peripheral airway buds of lung explants during cellular development from microscopic images. Methods: The outer contour was defined using an adaptive and multi-scale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelial was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds were counted as the skeleton branched ends from a skeletonized image of the lung inner epithelial. Results: The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Non-significant differences were found between the automatic and manual results in all culture days. Conclusions: The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lightning characteristics and allowing a reliable comparison between different researchers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulating mechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular research.This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development frommicroscopic images. Methods.Theouter contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to themanualmethod. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current level of demand by customers in the electronics industry requires the production of parts with an extremely high level of reliability and quality to ensure complete confidence on the end customer. Automatic Optical Inspection (AOI) machines have an important role in the monitoring and detection of errors during the manufacturing process for printed circuit boards. These machines present images of products with probable assembly mistakes to an operator and him decide whether the product has a real defect or if in turn this was an automated false detection. Operator training is an important aspect for obtaining a lower rate of evaluation failure by the operator and consequently a lower rate of actual defects that slip through to the following processes. The Gage R&R methodology for attributes is part of a Six Sigma strategy to examine the repeatability and reproducibility of an evaluation system, thus giving important feedback on the suitability of each operator in classifying defects. This methodology was already applied in several industry sectors and services at different processes, with excellent results in the evaluation of subjective parameters. An application for training operators of AOI machines was developed, in order to be able to check their fitness and improve future evaluation performance. This application will provide a better understanding of the specific training needs for each operator, and also to accompany the evolution of the training program for new components which in turn present additional new difficulties for the operator evaluation. The use of this application will contribute to reduce the number of defects misclassified by the operators that are passed on to the following steps in the productive process. This defect reduction will also contribute to the continuous improvement of the operator evaluation performance, which is seen as a quality management goal.