3 resultados para Multiple-input-multiple-output (mimo)
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This paper presents a taxonomy able to contribute to building a framework within the domain of Virtual Enterprises (VE). A VE taxonomy currently does not exist, and this lack is felt in the ambiguous way that some concepts are addressed, leading to a fragment understanding that hinders the development of the science of VE integration and management. The structure of the taxonomy developed is based on the view of the system as a 5-tuple consisting of Input, Control, Output, Mechanism, and Process, which is the underlying system-view in the well-know IDEF0 diagramming technique. In particular, this taxonomy addresses the VE extended lifecycle that implies the use of a meta-organization called Market of Resources, as an original contribution to the VE theory and practice. The taxonomy presented is constructed in a way to be easily complemented with other VE partial taxonomies that may be found in literature.
Resumo:
The purpose of this paper is to present a taxonomy able to contribute to building a framework within the domain of Virtual Enterprises (VE), to facilitate the sharing of knowledge and contributions to knowledge, as well as for trust building among VE stakeholders. A VE taxonomy currently does not exist, and this lack is felt in the ambiguous way that some concepts are addressed, leading to a fragment understanding that hinders the development of the science of VE integration and management. The structure of the taxonomy developed is based on the view of the system as a 5-tuple consisting of Input, Control, Output, Mechanism, and Process, which is the underlying system-view in the well-know IDEF0 diagramming technique. In particular, this taxonomy addresses the VE extended lifecycle that implies the use of a meta-organization called Market of Resources, as an original contribution to the VE theory and practice. The taxonomy presented does not repeat what the literature already includes, or the commonplaces, and it is constructed in a way to be easily complemented with other VE partial taxonomies that may be found in literature. Some suggestions for extensions to other interrelated domains (as evolution leaves taxonomies in an open or incompleteness state) are given in the text.
Resumo:
The radial undistortion model proposed by Fitzgibbon and the radial fundamental matrix were early steps to extend classical epipolar geometry to distorted cameras. Later minimal solvers have been proposed to find relative pose and radial distortion, given point correspondences between images. However, a big drawback of all these approaches is that they require the distortion center to be exactly known. In this paper we show how the distortion center can be absorbed into a new radial fundamental matrix. This new formulation is much more practical in reality as it allows also digital zoom, cropped images and camera-lens systems where the distortion center does not exactly coincide with the image center. In particular we start from the setting where only one of the two images contains radial distortion, analyze the structure of the particular radial fundamental matrix and show that the technique also generalizes to other linear multi-view relationships like trifocal tensor and homography. For the new radial fundamental matrix we propose different estimation algorithms from 9,10 and 11 points. We show how to extract the epipoles and prove the practical applicability on several epipolar geometry image pairs with strong distortion that - to the best of our knowledge - no other existing algorithm can handle properly.