2 resultados para Multimorbidity coefficient
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.