7 resultados para Matrix function
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.
Resumo:
For modern consumer cameras often approximate calibration data is available, making applications such as 3D reconstruction or photo registration easier as compared to the pure uncalibrated setting. In this paper we address the setting with calibrateduncalibrated image pairs: for one image intrinsic parameters are assumed to be known, whereas the second view has unknown distortion and calibration parameters. This situation arises e.g. when one would like to register archive imagery to recently taken photos. A commonly adopted strategy for determining epipolar geometry is based on feature matching and minimal solvers inside a RANSAC framework. However, only very few existing solutions apply to the calibrated-uncalibrated setting. We propose a simple and numerically stable two-step scheme to first estimate radial distortion parameters and subsequently the focal length using novel solvers. We demonstrate the performance on synthetic and real datasets.
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “… design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman 2011). When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “ … design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman, 2011) When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.
Resumo:
A model to simulate the conductivity of carbon nanotube/polymer nanocomposites is presented. The proposed model is based on hopping between the fillers. A parameter related to the influence of the matrix in the overall composite conductivity is defined. It is demonstrated that increasing the aspect ratio of the fillers will increase the conductivity. Finally, it is demonstrated that the alignment of the filler rods parallel to the measurement direction results in higher conductivity values, in agreement with results from recent experimental work.
Resumo:
The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.