2 resultados para Machine translation system
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.
Resumo:
The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.