3 resultados para MODEL SELECTION

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win-win or trade-off situations will be identified via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. Methods The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the Life Cycle Inventory (LCI) and the Life Cycle Impact Assessment (LCIA). Results In both the SST and CST systems the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win-win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its End-of-Life stage. Conclusions The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Further, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company, or in some cases even in its procurement practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the joint use of the AHP (Analytic Hierarchy Process) and the ICB (IPMA Competence Baseline), as a tool for the decision-making process of selecting the most suitable managers for projects. A hierarchical structure, comprising the IPMA’s ICB 3.0 contextual, behavioural and technical competence elements, is constructed for the selection of project managers. It also describes the AHP implementation, illustrating the whole process with an example using all the 46 ICB competence elements as model criteria. This tool can be of high interest to decision-makers because it allows comparing the candidates for managing a project using a systematic and rigorous process with a rich set of proven criteria.