3 resultados para Linear potential

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visions for Global Tourism Industry: Creating and Sustaining Competitive Strategies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business social networking is a facilitator of several business activities, such as market studies, communication with clients, and identification of business partners. This paper traduces the results of a study undertaken with the purpose of getting to know how the potential of networking is perceived in the promotion of business by participants of the LinkedIn network, and presents two main contributions: (1) to disseminate within the business community which is the relevance given to social networking; and (2) which are the social networks best suitable to the promotion of business, to support the definition of strategies and approaches accordingly. The results confirm that LinkedIn is the most suitable network to answer the needs of those that look for professional contacts and for the promotion of business, while innovation is the most recognized factor in the promotion of business through social networking. This study contributes to a better understanding of the potential of different business social networking sites, to support organizations and professionals to align their strategies with the perceived potential of each network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.