3 resultados para Lie detectors and detection

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current level of demand by customers in the electronics industry requires the production of parts with an extremely high level of reliability and quality to ensure complete confidence on the end customer. Automatic Optical Inspection (AOI) machines have an important role in the monitoring and detection of errors during the manufacturing process for printed circuit boards. These machines present images of products with probable assembly mistakes to an operator and him decide whether the product has a real defect or if in turn this was an automated false detection. Operator training is an important aspect for obtaining a lower rate of evaluation failure by the operator and consequently a lower rate of actual defects that slip through to the following processes. The Gage R&R methodology for attributes is part of a Six Sigma strategy to examine the repeatability and reproducibility of an evaluation system, thus giving important feedback on the suitability of each operator in classifying defects. This methodology was already applied in several industry sectors and services at different processes, with excellent results in the evaluation of subjective parameters. An application for training operators of AOI machines was developed, in order to be able to check their fitness and improve future evaluation performance. This application will provide a better understanding of the specific training needs for each operator, and also to accompany the evolution of the training program for new components which in turn present additional new difficulties for the operator evaluation. The use of this application will contribute to reduce the number of defects misclassified by the operators that are passed on to the following steps in the productive process. This defect reduction will also contribute to the continuous improvement of the operator evaluation performance, which is seen as a quality management goal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a method for real-time detection and tracking of people in video captured by a depth camera. For each object to be assessed, an ordered sequence of values that represents the distances between its center of mass to the boundary points is calculated. The recognition is based on the analysis of the total distance value between the above sequence and some pre-defined human poses, after apply the Dynamic Time Warping. This similarity approach showed robust results in people detection.