3 resultados para Learning algorithms
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.
Resumo:
This paper aims to describe the processes of teaching illustration and animation, together, in the context of a masters degree program. In Portugal, until very recently, illustration and animation higher education courses, were very scarce and only provided by a few private universities, which offered separated programs - either illustration or animation. The MA in Illustration and Animation (MIA) based in the Instituto Politécnico do Cávado e Ave in Portugal, dared to join these two creative areas in a common learning model and is already starting it’s third edition with encouraging results and will be supported by the first international conference on illustration and animation (CONFIA). This masters program integrates several approaches and techniques (in illustration and animation) and integrates and encourages creative writing and critique writing. This paper describes the iterative process of construction, and implementation of the program as well as the results obtained on the initial years of existence in terms of pedagogic and learning conclusions. In summary, we aim to compare pedagogic models of animation or illustration teaching in higher education opposed to a more contemporary and multidisciplinary model approach that integrates the two - on an earlier stage - and allows them to be developed separately – on the second part of the program. This is based on the differences and specificities of animation (from classic techniques to 3D) and illustration (drawing the illustration) and the intersection area of these two subjects within the program structure focused on the students learning and competencies acquired to use in professional or authorial projects.