8 resultados para Interactive experience
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
The purpose of this study was to characterize the situation of Portuguese Small and Medium Enterprises (SMEs) concerning the certification of their Quality Management Systems (QMS), Environmental Management Systems (EMS) and Occupational Health and Safety Management Systems (OHSMS), in their individually form, to identify benefits, drawbacks and difficulties associated with the certification process and to characterize the level of integration that has been achieved. This research was based on a survey carried out by the research team; it was administered to 46 Portuguese SMEs. Our sample comprised 20 firms (43%) from the Trade/Services activity sector, 17 (37%) from the Industrial sector, 5 (11%) from the Electricity/Telecommunications sector and 4 (9%) from the Construction area. All SMEs surveyed were certified according to the ISO 9001 (100%), a quarter of firms were certified according to the ISO 14001 (26.1%) and a few certified by OHSAS 18001 (15.2%). We undertook a multivariate cluster analysis, which enabled grouping variables into homogeneous groups or one or more common characteristics of the SMEs participating in the study. Results show that the main benefits that Portuguese SMEs have gained from the referred certifications have been, among others, an improvement of both their internal organization and external image. We also present the main difficulties in achieving certification. Overall, 7 of the Portuguese SMEs examined indicated that the main benefits of the IMS implementation management included costs reduction, increased employee training and easier compliance of legislation. The respective drawbacks and difficulties are also presented. Finally, we presented the main integrated items in the certified Portuguese SMEs we examined.
Resumo:
Abstract. Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI’s code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineer an abstract model of a user interface directly from the GUI’s legacy code. We also present results from a case study. These results are encouraging and give evidence that the goal of reverse engineering user interfaces can be met with more work on this technique.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques
Resumo:
A common problem among information systems is the storage and maintenance of permanent information identified by a key. Such systems are typically known as data base engines or simply as data bases. Today the systems information market is full of solutions that provide mass storage capacities implemented in different operating system and with great amounts of extra functionalities. In this paper we will focus on the formal high level specification of data base systems in the Haskell language. We begin by introducing a high level view of a data base system with a specification of the most common operations in a functional point of view. We then augment this specification by lifting to the state monad which is then modified once again to permit input/output operations between the computations
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
The aim of the research is to analyze the different aspects associated with the motivation and benefits of certified ISO 9001 companies in Portugal. A total of 426 certified Portuguese companies were surveyed. The response rate was equal to 61.03 percent. Our results suggest that the main motivation for certification were “improvement of quality”, “improvement of company image”, “marketing advantage”, “give empowerment to workers / capturing workers knowledge” and “cost reduction”. The main benefits that Portuguese companies have gained from the referred certification have been, among others, the improvement of “procedures”, beneficial effect on the “company’s image”, the improvement of quality products/services, increase of the “customer satisfaction”, improvement of “on-time delivery”; improvement the “morale” of workers’ increase in productivity and decrease of “production costs”, among others. The surveyed firms belong only to the Minho region of the north of Portugal. This paper aims to provide a contribution to the research related to the motivation and benefits associated to the quality management systems. The selection of the motives and benefits were validated through statistical analysis and the relationship between expected and perceived benefits was discussed.
Resumo:
Various authors have written about the importance of drawing in design methodology. Their general conclusion points drawing as an essential tool for design research, as it allows investigation of several alternative solutions in design process (Cross, 2007). The recent profound changes in design nature (Norman, 2011), justify a discussion on the purpose of drawing in design courses. As a consequence of this new reality, the educational institutions face the challenge of the definition of their curricular structures and teaching methodologies. Among others, concepts such as collaboration and multidisciplinary design approaches have been discussed as strategies for design education (Heller and Talarico, 2011, pp. 82-85). In this context, and using our teaching activity experience in Drawing and Design areas, the authors discuss: how can drawing methods be included in the current design teaching? can drawing be considered as an interdisciplinary approach? what contributions can these methodologies provide to the educational/learning process? Based on these concerns, we developed an interdisciplinary project in the Graphic Design Course with two curricular units: Drawing 1 and Aesthetic and Design Theory 1. In this article the authors present the aims and process developed, and discuss the outcomes of this pedagogical experience.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.