4 resultados para Human-computer Interface
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
With the number of elderly people increasing tremendously worldwide, comes the need for effective methods to maintain or improve older adults' cognitive performance. Using continuous neurofeedback, through the use of EEG techniques, people can learn how to train and alter their brain electrical activity. A software platform that puts together the proposed rehabilitation methodology has been developed: a digital game protocol that supports neurofeedback training of alpha and theta rhythms, by reading the EEG activity and presenting it back to the subject, interleaved with neurocognitive tasks such as n-Back and Corsi Block-Tapping. This tool will be used as a potential rehabilitative platform for age-related memory impairments.
Resumo:
Laparoscopy is a surgical procedure on which operations in the abdomen are performed through small incisions using several specialized instruments. The laparoscopic surgery success greatly depends on surgeon skills and training. To achieve these technical high-standards, different apprenticeship methods have been developed, many based on in vivo training, an approach that involves high costs and complex setup procedures. This paper explores Virtual Reality (VR) simulation as an alternative for novice surgeons training. Even though several simulators are available on the market claiming successful training experiences, their use is extremely limited due to the economic costs involved. In this work, we present a low-cost laparoscopy simulator able to monitor and assist the trainee’s surgical movements. The developed prototype consists of a set of inexpensive sensors, namely an accelerometer, a gyroscope, a magnetometer and a flex sensor, attached to specific laparoscopic instruments. Our approach allows repeated assisted training of an exercise, without time constraints or additional costs, since no human artificial model is needed. A case study of our simulator applied to instrument manipulation practice (hand-eye coordination) is also presented.
Resumo:
Recent progresses in the software development world has assisted a change in hardware from heavy mainframes and desktop machines to unimaginable small devices leading to the prophetic "third computing paradigm", Ubiquitous Computing. Still, this novel unnoticeable devices lack in various capabilities, like computing power, storage capacity and human interface. Connectivity associated to this devices is also considered an handicap which comes generally associated expensive and limited protocols like GSM and UMTS. Considering this scenario as background, this paper presents a minimal communication protocol introducing better interfaces for limited devices. Special attention has been paid to the limitations of connectivity, storage capacity and scalability of the developed software applications. Illustrating this new protocol, a case-study is presented addressing car sensors communicating with a central
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.