3 resultados para GIS BASED PLANNING TOOLS

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selection of an Enterprise Resource Planning (ERP) system is one of the most sensitive and highest impact processes in the area of information systems and technologies, because it supports and integrates the whole business of an organization. Hence the importance of deciding the best solution in order to contribute to the organization's competitiveness in a global and increasingly demanding market. Therefore, it is essential to provide tools to support decision making, turning complex and often intangible decisions into simple and quantifiable scenarios. This study addressed the adoption of the Analytical Hierarchy Process (AHP) multicriteria decision method to support the selection of an ERP system. The literature review was the source used to obtain the set of the most relevant criteria to be considered in this decision, which were subsequently validated through systematic application of various surveys of experts and people related to the field of ERP systems. To support the application of AHP, according to the model obtained in the study, it was developed a web application that will be available to the general public. The responsible for the acquisition of ERP systems can use it to easily apply the AHP method based on validated decision model. On the other hand, the web application can be used as a validation tool, allowing collecting data for future developments of the decision model.