6 resultados para Formal Methods. Component-Based Development. Competition. Model Checking
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Abstract. Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI’s code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineer an abstract model of a user interface directly from the GUI’s legacy code. We also present results from a case study. These results are encouraging and give evidence that the goal of reverse engineering user interfaces can be met with more work on this technique.
Resumo:
The lack of a commonly accepted de nition of a software component, the proliferation of competing `standards' and component frameworks, is here to stay, raising the fundamental question in component-based development of how to cope in practice with heterogeneity. This paper reports on the design of a Component Repository aimed to give at least a partial answer to the above question. The repository was fully speci ed in Vdm and a working prototype is currently being used in an industrial environment
Resumo:
Management systems standards (MSSs) have developed in an unprecedented manner in the last few years. These MSS cover a wide array of different disciplines, aims and activities of organisations. Also, organisations are populated with an enormous diversity of independent management systems (MSs). An integrated management system (IMS) tends to integrate some or all components of the business. Maximising their integration in one coherent and efficient MS is increasingly a strategic priority and constitutes an opportunity for businesses to be more competitive and consequently, promote its sustainable success. Those organisations that are quicker and more efficient in their integration and continuous improvement will have a competitive advantage in obtaining sustainable value in our global and competitive business world. Several scholars have proposed various theoretical approaches regarding the integration of management sub-systems, leading to the conclusion that there is no common practice for all organisations as they encompass different characteristics. One other author shows that several tangible and intangible gains for organisations, as well as to their internal and external stakeholders, are achieved with the integration of the individual standardised MSs. The purpose of this work was to conceive a model, Flexible, Integrator and Lean for IMSs, according to ISO 9001 for quality; ISO 14001 for environment and OHSAS 18001 for occupational health and safety (IMS–QES), that can be adapted and progressively assimilate other MSs, such as, SA 8000/ISO 26000 for social accountability, ISO 31000 for risk management and ISO/IEC 27001 for information security management, among others. The IMS–QES model was designed in the real environment of an industrial Portuguese small and medium enterprise, that over the years has been adopting, gradually, in whole or in part, individual MSSs. The developed model is based on a preliminary investigation conducted through a questionnaire. The strategy and research methods have taken into consideration the case study. Among the main findings of the survey we highlight: the creation of added value for the business through the elimination of several organisational wastes; the integrated management of the sustainability components; the elimination of conflicts between independent MS; dialogue with the main stakeholders and commitment to their ongoing satisfaction and increased contribution to the company’s competitiveness; and greater valorisation and motivation of employees as a result of the expansion of their skill base, actions and responsibilities, with their consequent empowerment. A set of key performance indicators (KPIs) constitute the support, in a perspective of business excellence, to the follow up of the organisation’s progress towards the vision and achievement of the defined objectives in the context of each component of the IMS model. The conceived model had many phases and the one presented in this work is the last required for the integration of quality, environment, safety and others individual standardised MSs. Globally, the investigation results, by themselves, justified and prioritised the conception of an IMS–QES model, to be implemented at the company where the investigation was conducted, but also a generic model of an IMS, which may be more flexible, integrator and lean as possible, potentiating the efficiency, added value both in the present and, fundamentally, for future.
Resumo:
This paper reports on the development of specific slicing techniques for functional programs and their use for the identification of possible coherent components from monolithic code. An associated tool is also introduced. This piece of research is part of a broader project on program understanding and re-engineering of legacy code supported by formal methods
Resumo:
Purpose Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win-win or trade-off situations will be identified via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. Methods The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the Life Cycle Inventory (LCI) and the Life Cycle Impact Assessment (LCIA). Results In both the SST and CST systems the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win-win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its End-of-Life stage. Conclusions The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Further, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company, or in some cases even in its procurement practices.
Resumo:
Over the last decade component-based software development arose as a promising paradigm to deal with the ever increasing complexity in software design, evolution and reuse. SHACC is a prototyping tool for component-based systems in which components are modelled coinductively as generalized Mealy machines. The prototype is built as a HASKELL library endowed with a graphical user interface developed in Swing