2 resultados para Flow quantification
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Protein aggregation became a widely accepted marker of many polyQ disorders, including Machado-Joseph disease (MJD), and is often used as readout for disease progression and development of therapeutic strategies. The lack of good platforms to rapidly quantify protein aggregates in a wide range of disease animal models prompted us to generate a novel image processing application that automatically identifies and quantifies the aggregates in a standardized and operator-independent manner. We propose here a novel image processing tool to quantify the protein aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal mi-croscopy images were obtained from animals of different genetic conditions. The image processing application was developed using MeVisLab as a platform to pro-cess, analyse and visualize the images obtained from those animals. All segmenta-tion algorithms were based on intensity pixel levels.The quantification of area or numbers of aggregates per total body area, as well as the number of aggregates per animal were shown to be reliable and reproducible measures of protein aggrega-tion in C. elegans. The results obtained were consistent with the levels of aggrega-tion observed in the images. In conclusion, this novel imaging processing applica-tion allows the non-biased, reliable and high throughput quantification of protein aggregates in a C. elegans model of MJD, which may contribute to a significant improvement on the prognosis of treatment effectiveness for this group of disor-ders
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.