1 resultado para Feature nasal
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (16)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (193)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (73)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (38)
- Centro Hospitalar do Porto (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (18)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- Duke University (1)
- Earth Simulator Research Results Repository (1)
- Ecology and Society (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (11)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (29)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- Repositorio Institucional UNISALLE - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo España (1)
- Scielo Saúde Pública - SP (62)
- Scielo Uruguai (3)
- Universidad Autónoma de Nuevo León, Mexico (8)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (20)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (2)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (41)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (3)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (103)
- WestminsterResearch - UK (1)
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention