2 resultados para Environment with multiple obstacles
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
According to Wright [1] certification of products and processes began during the 1960’s in the manufacturing industry, as a tool to control and assure the quality/conformity of products and services provided by suppliers to customers/consumers. Thus, the series of ISO 9000 was published first time, in 1987 and it was been created with a flexible character, to be reviewed periodically. Later, were published others normative references, which highlight the ISO 14001 in 1996 and OHSAS 18001 in 1999. This was also, the natural sequence of the certification processes in the organizations, i.e., began with the certification of quality management systems (QMS) followed by the environmental management systems (EMS) and after for the Occupational Health and Safety Management System (OHSMS). Hence, a high percentage of organizations with an EMS, in accordance with the ISO 14001, had also implemented, a certified QMS, in accordance with ISO 9001. At first the implementation of a QMS was particularly relevant in high demanding activity sectors, like the automotive and aeronautical industries, but it has rapidly extended to every activity sector, becoming a common requisite of any company worldwide and a factor of competitiveness and survival. Due to the increasingly demanding environmental legislation in developed countries, companies nowadays are required to seriously take into consideration not only environmental aspects associated to the production chain itself, but also to the life cycle of their products.
Resumo:
According to the opinion of clinicians, emerging medical conditions can be timely detected by observing changes in the activities of daily living and/or in the physiological signals of a person. To accomplish such purpose, it is necessary to properly monitor both the person’s physiological signals as well as the home environment with sensing technology. Wireless sensor networks (WSNs) are a promising technology for this support. After receiving the data from the sensor nodes, a computer processes the data and extracts information to detect any abnormality. The computer runs algorithms that should have been previously developed and tested in real homes or in living-labs. However, these installations (and volunteers) may not be easily available. In order to get around that difficulty, this paper suggests the making of a physical model to emulate basic actions of a user at home, thus giving autonomy to researchers wanting to test the performance of their algorithms. This paper also studies some data communication issues in mobile WSNs namely how the orientation of the sensor nodes in the body affects the received signal strength, as well as retransmission aspects of a TDMA-based MAC protocol in the data recovery process.