8 resultados para Environment monitoring
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.
Resumo:
This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene,adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.
Resumo:
The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.
Resumo:
ZigBee-based Remote Patient Monitoring
Resumo:
According to Wright [1] certification of products and processes began during the 1960’s in the manufacturing industry, as a tool to control and assure the quality/conformity of products and services provided by suppliers to customers/consumers. Thus, the series of ISO 9000 was published first time, in 1987 and it was been created with a flexible character, to be reviewed periodically. Later, were published others normative references, which highlight the ISO 14001 in 1996 and OHSAS 18001 in 1999. This was also, the natural sequence of the certification processes in the organizations, i.e., began with the certification of quality management systems (QMS) followed by the environmental management systems (EMS) and after for the Occupational Health and Safety Management System (OHSMS). Hence, a high percentage of organizations with an EMS, in accordance with the ISO 14001, had also implemented, a certified QMS, in accordance with ISO 9001. At first the implementation of a QMS was particularly relevant in high demanding activity sectors, like the automotive and aeronautical industries, but it has rapidly extended to every activity sector, becoming a common requisite of any company worldwide and a factor of competitiveness and survival. Due to the increasingly demanding environmental legislation in developed countries, companies nowadays are required to seriously take into consideration not only environmental aspects associated to the production chain itself, but also to the life cycle of their products.
Resumo:
This work is developed in the context of Ambient Assisted Living (AAL) and has, as main purpose, the development of a mechatronic system that allows caring of bedridden patients with ongoing medical care terminal (MCT), by a single person. This system allows higher autonomy in domiciliary care, safety, comfort and hygiene of bedridden patients. It contributes to a large increase in their quality of life as well as the ease of monitoring by providers of continuous care, which, in many cases, may be the family itself. The product includes an embedded processing interface for acquiring physiological data to support online monitoring. The development of this project was focused on improving the quality of life, autonomy, participation in social life and reducing healthcare costs in the area AAL. The developed societies currently face severe demographic changes: the world is aging at an unprecedented rate. In 2000, about 420 million people, or about 7 percent of the world population were over 65 years old. In 2050, that number will be near 1500 million people, about 16 percent of the world population. This demographic trend will be accompanied by the increase of people with physical limitations. This will impose new challenges for traditional health systems, not only for Portugal but also for all European countries. There is an urgent need to find solutions to improve the lives of people in their preferred environment by increasing their autonomy, self-confidence and mobility. Therefore, in the case of household scenarios, the provision of effective health services is of fundamental importance to the welfare and economic development of each country. This ongoing project aims to develop a mechatronic system to meet the diverse needs, namely: improving life, health care, safety, comfort, and remote monitoring of bedridden person.
Resumo:
Purpose – The purpose of this paper is to propose a generic model of Integrated Management System of Quality, Environment and Safety (IMS-QES) that can be adapted and progressively to assimilate various Management Systems, of which highlights: ISO 9001 for Quality; ISO 14001 for Environment; OHSAS 18001 for Occupational Health and Safety. Design/methodology/approach – The model was designed in the real environment of a Portuguese Organization and 160 employees were surveyed. The rate response was equal to 86 percent. The conceived model was implemented in a first phase for the integration of Quality, Environment and Safety Management Systems. Findings – Among the main findings of the survey the paper highlights: the elimination of conflicts between individual systems with resources optimization; creation of added value to the business by eliminating several types of wastes; the integrated management of sustainability components in a global market; the improvement of partnerships with suppliers of goods and services; reducing the number of internal and external audits. Originality/value – This case study is one of the first Portuguese empirical researches about IMS-QES and the paper believes that it can be useful in the creation of a Portuguese guideline for integration, namely the Quality Management Systems; Environmental Management Systems and Occupational Health and Safety Management Systems among others.
Resumo:
Nanotechnology is the manipulation of matter on na almost atomic scale to produce new structures, materials, and devices. As potential occupational exposure to nanomaterials (NMs) becomes more prevalente, it is importante that the principles of medical surveillance and risk management be considered for workers in the nanotechnology industry.However, much information about health risk is beyond our current knowledge. Thus, NMs presente new challenges to understanding, predicting, andmanageing potential health risks. First, we briefly describe some general features of NMs and list the most importante types of NMs. This review discusses the toxicological potential of NMs by comparing possible injury mechanism and know, or potentially adverse, health effects. We review the limited research to date for occupational exposure to these particles and how a worker might be exposed to NMs. The principles of medical surveillance are reviewed to further the discussion of occupational health surveillance are reviewed to further the discussion of occupational health surveillance for workers exposed to NMs. We outlinehow occupational health professionals could contribute to a better knowledge of health effects by the utilization of a health surveillance program and by minimizing exposure. Finally, we discuss the early steps towards regulation and the difficulties facing regulators in controlling potentially harmful exposures in the absence of suficiente scientific evidence.