4 resultados para Eigenvalue problems
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
The radial undistortion model proposed by Fitzgibbon and the radial fundamental matrix were early steps to extend classical epipolar geometry to distorted cameras. Later minimal solvers have been proposed to find relative pose and radial distortion, given point correspondences between images. However, a big drawback of all these approaches is that they require the distortion center to be exactly known. In this paper we show how the distortion center can be absorbed into a new radial fundamental matrix. This new formulation is much more practical in reality as it allows also digital zoom, cropped images and camera-lens systems where the distortion center does not exactly coincide with the image center. In particular we start from the setting where only one of the two images contains radial distortion, analyze the structure of the particular radial fundamental matrix and show that the technique also generalizes to other linear multi-view relationships like trifocal tensor and homography. For the new radial fundamental matrix we propose different estimation algorithms from 9,10 and 11 points. We show how to extract the epipoles and prove the practical applicability on several epipolar geometry image pairs with strong distortion that - to the best of our knowledge - no other existing algorithm can handle properly.
Resumo:
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
1 – Summary of the decision taken by the Portuguese Constitutional Court, of January 13, 2011; 2 – Complete text of the decision of the Portuguese Constitutional Court, of January 13, 2011, Judge Maria João ANTUNES (Reporter), Judge Carlos Pamplona de OLIVEIRA, Judge José Borges SOEIRO, Judge Gil GALVÃO, Judge Rui Manuel Moura RAMOS (President) –in terms of the tribunalconstitucional.pt, August 1, 2011; 3 – Brief annotation to the problem of the “medical act”; 3.1 – Plus some conclusions on the brief annotation to the problem of the “medical act”; 3.2 – Brief annotation to the problem of “consent”– continuation of the previous comments; 4 – Conclusions. It must never be forgotten that “consent” does not stand as the only cause of exclusion of unlawfulness.