1 resultado para EMOTIONAL MOTOR SYSTEM
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (1)
- Archive of European Integration (2)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (268)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (41)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (7)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (8)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (15)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (62)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (12)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (6)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universidade Técnica de Lisboa (2)
- Universita di Parma (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (22)
- Université de Montréal, Canada (8)
- University of Michigan (27)
- University of Queensland eSpace - Australia (146)
- University of Washington (2)
Resumo:
The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.