5 resultados para EMOTIONAL INTELLIGENCE

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developed societies are currently facing severe demographic changes: the world is getting older at an unprecedented rate. In 2000, about 420 million people, or approximately 7 percent of the world population, were aged 65 or older. By 2050, that number will be nearly 1.5 billion people, about 16 percent of the world population. This demographic trend will be also followed by an increase of people with physical limitations. New challenges will be raised to the traditional health care systems, not only in Portugal, but also in all other European states. There is an urgent need to find solutions that allow extending the time people can live in their preferred environment by increasing their autonomy, self-confidence and mobility. AAL4ALL presents an idea for an answer through the development of an ecosystem of products and services for Ambient Assisted Living (AAL) associated to a business model and validated through large scale trial. This paper presents the results of the first survey developed within the AAL4ALL project: the users’ survey targeted at the Portuguese seniors and pre-seniors. This paper is, thus, about the lives of the Portuguese population aged 50 and over.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotions play a central role in our daily lives, influencing the way we think and act, our health and sense of well-being, and films are by excellence the form of art that exploits our affective, perceptual and intellectual activity, holding the potential for a significant impact. Video is becoming a dominant and pervasive medium, and online video a growing entertainment activity on the web and iTV, mainly due to technological developments and the trends for media convergence. In addition, the improvement of new techniques for gathering emotional information about videos, both through content analysis or user implicit feedback through user physiological signals complemented in manual labeling from users, is revealing new ways for exploring emotional information in videos, films or TV series, and brings out new perspectives to enrich and personalize video access. In this work, we reflect on the power that emotions have in our lives, on the emotional impact of movies, and on how to address this emotional dimension in the way we classify and access movies, by exploring and evaluating the design of iFelt in its different ways to classify, access, browse and visualize movies based on their emotional impac

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.