2 resultados para Document classification,Naive Bayes classifier,Verb-object pairs
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
In cameras with radial distortion, straight lines in space are in general mapped to curves in the image. Although epipolar geometry also gets distorted, there is a set of special epipolar lines that remain straight, namely those that go through the distortion center. By finding these straight epipolar lines in camera pairs we can obtain constraints on the distortion center(s) without any calibration object or plumbline assumptions in the scene. Although this holds for all radial distortion models we conceptually prove this idea using the division distortion model and the radial fundamental matrix which allow for a very simple closed form solution of the distortion center from two views (same distortion) or three views (different distortions). The non-iterative nature of our approach makes it immune to local minima and allows finding the distortion center also for cropped images or those where no good prior exists. Besides this, we give comprehensive relations between different undistortion models and discuss advantages and drawbacks.
Resumo:
Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.