4 resultados para Cross-functional process improvement
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Development of suitable membranes is a fundamental requisite for tissue and biomedical engineering applications. This work presents fish gelatin random and aligned electrospun membranes cross-linked with glutaraldehyde (GA). It was observed that the fiber average diameter and the morphology is not influenced by the GA exposure time and presents fibers with an average diameter around 250 nm. Moreover, when the gelatin mats are immersed in a phosphate buffered saline solution (PBS), they can retain as much as 12 times its initial weight of solution almost instantaneously, but the material microstructure of the fiber mats changes from the characteristic fibrous to an almost spherical porous structure. Cross-linked gelatin electrospun fiber mats and films showed a water vapor permeability of 1.37 ± 0.02 and 0.13 ± 0.10 (g.mm)/(m2.h.kPa), respectively. Finally, the processing technique and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Preliminary cell culture results showed good cell adhesion and proliferation in the cross-linked random and aligned gelatin fiber mats.
Resumo:
Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water and electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 m width were achieved. After cross-linking with glutaraldehyde, -elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~ 80 ºC. Moreover, -Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for oriented and random fibers mats in a PBS solution was 330 ± 10 kPa and 732 ± 165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.
Resumo:
Purpose – Castings defects are usually easy to characterize, but to eradicate them can be a difficult task. In many cases, defects are caused by the combined effect of different factors, whose identification is often difficult. Besides, the real non-quality costs are usually unknown, and even neglected. This paper aims to describe the development of a modular tool for quality improvement in foundries, and its main objective is to present the application potential and the foundry process areas that are covered and taken into account. Design/methodology/approach – The integrated model was conceived as an expert system, designated Qualifound, which performs both qualitative and quantitative analyses. For the qualitative analyses mode, the nomenclature and the description of defects are based on the classification suggested by the International Committee of the Foundry Technical Association. Thus, a database of defects was established, enabling one to associate the defects with the relevant process operations and the identification of their possible causes. The quantitative analysis mode deals with the number of produced and rejected castings and includes the calculation of the non-quality costs. Findings – The validation of Qualifound was carried out in a Portuguese foundry, whose quality system had been certified according to the ISO 9000 standards. Qualifound was used in every management area and it was concluded that the application had the required technological requisites to provide the necessary information for the foundry management to improve process quality. Originality/value – The paper presents a successful application of an informatics tool on quality improvement in foundries.
Resumo:
Thermal degradation of as electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde (GA) have been studied by thermogravimetry (TG) coupled with an infrared spectrometer (FTIR). The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 ºC, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 – 270 ºC and chitosan thermal degradation that starts around 250 ºC and goes up to 400 ºC. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.